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Abstract--An ordinary differential equation, derived previously by the authors to describe liquid-gas 
menisci in the context of advancing contact lines, is applied to the receding case. The existence of a critical 
capillary number is demonstrated above which no solution of the differential equations exists. This critical 
capillary number exhibits a strong dependence on the system scale and true contact angle at the wall. 
Comparison of critical capillary numbers, predicted by the model and obtained from experiments, suggests 
that at the critical capillary number the true contact angle at the wall is smaller than the (receding) static 
contact angle. 
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1. I N T R O D U C T I O N  

While advancing liquid-gas contact lines have been the subject of  attention for some time, most 
research into receding lines is relatively recent. The most striking feature of  receding contact lines, 
in contrast with advancing contact lines, is the existence of  a maximum speed of  dewetting as 
demonstrated experimentally by Blake & Ruschak (1979). For  small capillary numbers, Ca 
(Ca = I~U/a, where #---dynamic viscosity of  the liquid, U--l ine speed and tr--surface tension), a 
hydrodynamic description was given by Voinov (1976, 1978), de Gennes (1986), Cox (1986) and 
Teletzke et al. (1988), the latter incorporating not only hydrodynamics but also disjoining pressure. 
Spontaneous dewetting of  a parallel film on plane surfaces has been described by Brochard et al. 

(1988), Brochard-Wyart & Daillant (1990), Redon et al. (1991) and of film on fibres by 
Brochard-Wyart et al. (1987). A few experimental studies examined the receding contact line by 
withdrawing a polyester tape (Petrov & Sedev 1985) or a glass rod (Sedev & Petrov 1988/89, 1991) 
from a liquid. Receding contact lines with surfactants were studied by Petrov & Radoev (1981), 
de Gennes (1986) and Hopf  & Geidel (1987). Receding contact lines in the geometry of  a capillary 
have not been the subject of  a large number of studies. Rillaerts & Joos (1980) examined 
experimentally almost exclusively advancing contact angles in a tube. They reported that "the 
receding contact angle became rapidly zero". One study of  Qurr6 (1991) examined experimentally 
the relation between the static contact angle and the Ca at which a film starts being left behind, 
the critical capillary number (Caerit). 

In the present article a simplified approach to the hydrodynamics of moving contact lines, 
developed earlier in the context of  advancing lines without restriction on the magnitude of  Ca 
[Boender et al. (1991)---henceforth referred to as paper I], is applied to the problem of a steadily 
receding liquid-gas contact line. The approach supposes the system length scale to be sufficiently 
small and the liquid sufficiently viscous for gravitational and inertial stresses to be negligible in the 
liquid and all stresses, aside from a uniform pressure, to be negligible in the gas. 

Like other analyses of  the line-speed dependence of  the apparent (or "dynamic") contact angle, 
the region adjoining the line is split into a region in which the classical concepts of  surface tension 
and the continuum approximation apply and a region very close to the line in which one or more 
of  these concepts breaks down [see Dussan (1979) and de Gennes (1985) for relatively recent 
reviews]. In the former region, the approach developed in paper I reduces the free-surface 
hydrodynamic problem relating to a second-order ordinary differential equation for the variation 
of  meniscus inclination with distance from the wall by making use of  the fact that this variation 
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is typically slow in an appropriate dimensionless sense, so that analytical solutions for the flow and 
pressure variation in a plane wedge are applicable locally. The existence of the non-classical region 
was incorporated in paper I by including the only feature known with certainty--that the 
continuum description, and with it concepts such as the meniscus inclination, loses its validity at 
a distance from the wall minimally of the order of a molecular dimension. The meniscus inclination 
at this distance from the wall, the true contact angle, was furthermore for simplicity's sake supposed 
to be adequately approximated by the equilibrium (static) value.t The latter assumption was not, 
however, severely tested by the ensuing comparison of predicted and measured dynamic angles, 
since for the large line speeds at which an appreciable deviation from the static angle might be 
expected the dynamic angle proves relatively insensitive to the value of the true angle. 

The meniscus equation derived in paper I contains no assumption as to the sign of the line speed 
and is consequently applicable to receding liquid-gas contact lines as well. The meniscus equation is 
presented in section 2 and its numerical solution in the receding case explored in section 3. In 
sections 4 and 6 the corresponding implications for the dependence of the dynamic contact angle on 
line speed, true contact angle and system scale are investigated. In section 5 the validity of the model 
is examined. In section 7 predictions of Cacri~ are compared with the experiments of Qu6r6 (1991). 

2. T H E  D I F F E R E N T I A L  E Q U A T I O N S  D E S C R I B I N G  R E C E D I N G  M E N I S C I  

With respect to a reference frame moving with the contact line, a receding meniscus may be 
described by means of the coordinates x and ~0 (figure 1, q~ in radians). Neglecting gravitational and 
inertial forces, the differential equation describing an advancing meniscus between two parallel 
planes, when a viscous liquid replaces a gas over a smooth homogeneous surface, is shown in paper 
I to be 

A(qo)sin~odx sinq~ = x2 [1] 

where 

and 

- 2  sin ~o [2] 
A (q~) = sin q~ cos tp - ~o 

Ca =/xU_U [3] 
a 

is the dimensionless line speed, or capillary number (#, U and tr are the viscosity of the advancing 
fluid, the speed of the contact line and the surface tension, respectively). As noted above, [1] is based 

tThe solid is supposed to be perfectly smooth and chemically homogeneous, resulting in equal advancing and receding static 
angles. In reality a certain hysteresis is always present (see section 7). 
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on a local-wedge approximation for the flow and pressure gradient which should be acceptable 
provided that angle cp varies slowly in a dimensionless sense: 

dip 

~o ,~ 1 [4] 
ds 
W 

(s and w are the arc length along the meniscus and the local wedge width, respectively: figure 1). 
The derivation of  [1] places no restriction on the sign of  the line speed and [1] thus also applies 

to a receding meniscus (Ca < 0), provided [4] is satisfied. (With U < 0,/~ becomes the viscosity of  
the receding fluid.) 

Likewise the differential equation describing an advancing meniscus in a tube, 

d (sin dip + c o s t p ' )  -CaA(rp)sin~o 
d x  tP--~x a - x / = x 2 

[5] 

(in which a is the tube radius), derived in paper I, should be applied to the receding case also. 
The boundary conditions to be satisfied by [1] or [5] at the wall are again taken to be 

q~=q00, a t x = 2 ,  [6] 

where 2 is a distance minimally of  the order of  a molecular dimension and ~o0 the true contact angle. 
Alternatively, 2 and tp0 may be viewed as phenomenological parameters whose magnitude must be 
determined from experiment and whose interpretation must await more detailed consideration of  
the region adjoining the line. As discussed in the advancing case, there is no a p r i o r i  justification 
for the assumption that cp0 remains equal to the static contact angle, tps. Furthermore, in contrast 
to the advancing case, any variation of  ~00 with line speed proves of  major influence on the apparent 
or "dynamic" contact angle, cpd, in the receding case. 

In paper I the dynamic contact angle is defined as the angle obtained if the central, circular profile 
of  the meniscus is extrapolated to the wall. In the receding case a closely circular central profile 
is often absent and a more practical definition is the angle which a circular/spherical meniscus 
having the same apex height h as the actual meniscus makes with the wall (figure 2): 

, {  - 2 h a  "~ 
[7] 

In cases in which a large spherical portion exists the two definitions of  cpa become equivalent. 

3. S O L U T I O N  OF THE M E N I S C U S  E Q U A T I O N  

The differential equations [1] and [5] are solved as indicated in paper I, making use of  a 
logarithmic scale of  distance, 

~ =  ln(-~) , [8] 

by numerically integrating from the centreline/centre axis ~c to the distance 2 from the wall (~ = 0) 
using a second-order finite-difference scheme. The subscript c is used to identify a property on the 
centre plane/centre axis and the subscript 0 a property at ~ = 0. The integration procedure requires 
the values of  tp¢ and r/c, where 

d~ [9] 
r /=  d-- ~ • 

Symmetry requires that q~c be 90 °. The value of  r/c determines the value of  ~00 obtained. 
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Figure 4. Meniscus profile for the two solutions (Ca = -0.1, 
¢c = 15, (p0 = 137.2°). 

To investigate the effect of  system configuration on the shape of  the receding menisci, menisci 
are examined between plates and in a tube for the case ~o0--- 138.15 °, ~¢ = 15t and Ca = -0 .1  
(roughly the largest value of ICal for which a solution exists, as will be clear later). In the tube case 
the corresponding values of r/c and q)a are 0.77 and 53 °, while the corresponding values in the 
parallel-plate case are 1.00 and 41 °. Although this difference appears considerable, the Ca required 
in the tube case to obtain r/c = 1 (with tO0 = 138.15 ° and ¢¢ = 15) is in fact only marginally larger: 
-0 .102.  For smaller Ca this difference becomes even smaller, vanishing completely for Ca---,0. Only 
the tube case will be examined further in detail in this article. 

The meniscus equation [5] is solved for different r/c values. In figure 3, too is given as a function 
of t/¢ (where ~c = 15 and Ca = -0 .1) .  In contrast with the situation for positive Ca, tp0 is n o t  a 

monotonic function of  qc but exhibits a minimum (q~0,min = 137.0°) • Evidently for ~o0 < ¢P0,min no 
solution of  [5] exists, while for ~o0 > ¢P0.min there are two solutions. These two solutions for 
~o0 = 137.2 ° are shown in figure 4 (go = 0.98 for the upper curve and r/¢ = 1.30 for the other one). 
For  the solutions having d(p0/dr/c > 0 (see figure 3) it is found that dr/c/dCa > 0 (for constant ~o0 
and ~¢) and consequently that d~od/dCa < 0, which is contrary to experimental findings (Dussan 
1979). The solutions for which d~00/dq¢>0 will therefore be ignored. These solutions are 
presumably unstable and in that case not encountered in reality. 

In general ~O0.min is a function of the Ca and of  ~ .  In figure 5, ~o0.min is given as a function of 
l o g ( -  Ca) for different ~ values. In a given system there thus exists a Ca (the Ca¢n,) beyond which 
(in absolute value) there is no solution to the differential equation describing a stationary receding 
meniscus. Beyond the Cacnt unsteady effects are therefore to be expected, probably resulting in a 
film of  liquid being left behind. 

4. D Y N A M I C  C O N T A C T  A N G L E S  

In figure 6, (Pd is presented as a function of log(-- Ca) for three values of ¢c and of  (P0. The authors 
know of  no data on tp0 as a function of the contact line speed. Should ~o0 remain constant (equal 
to q~s) then the curves in figure 6 would represent the actual variation of ~Oa in a given system. 
Conversely the actual variation of (Pd provides information on any U-dependence of tpo. More will 
be said on this subject in section 6. 

fTbe order of magnitude corresponding to tubes of order 1 mm, assuming 2 to be of the order of 1 nm. 
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the Ca~, on the true contact angle,  ~'0. (/~.-values). 

As noted earlier, various authors have defined the dynamic contact angle (especially in 
experimental work) as the angle which the circular profile of  a moving meniscus seems to make 
with the wall. This definition is equivalent to [7] only if the greater part of the meniscus profile 
is circular. To obtain an impression of the extent of the central, circular portion of the meniscus, 
the meniscus is here defined as circular if it deviates from the extrapolation of the circular profile 
at the tube axis by < 3 ° (a not far-fetched uncertainty for measurements). The spherical fraction 
of the meniscus is given as a function of Ca in figure 7, defining this fraction as (a - x~)/a, where 
xs denotes the 3°-deviation point. Near the Cac,, the predicted deviations of the meniscus from the 
spherical shape should be detectable in experiments, especially for larger true contact angles. 

5 .  T H E  L O C A L - W E D G E  A P P R O X I M A T I O N  

In figure 8 the dimensionless wedge-angle variation rate, (dq~/q~)/(ds/w) is examined for Ca 
values close to the critical. In the wall region where the deviation from the spherical becomes major, 
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Figure 7. Spherical fraction of the meniscus for the cases 
studied in figure 6. 

Figure 8. The dimensionless wedge-angle variation rate 
I(dto/~o)/(ds/w)l as a function of ~ for the cases studied in 

figure 6 (r/c = I, Ca  close to the critical value). 
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Figure 10. The dependence of  the dynamic contact angle on 

the system scale (/2-value) for various Ca (~Oo = 135°). 

this parameter is maximally about 0.2--a situation similar to that found in the advancing case for 
a Ca of order 10-', where close agreement with both numerical and experimental results is found. 
As discussed in paper I, requirement [4] is never satisfied in the central circular region, implying 
that the deviation from a circular profile predicted by [5] will not be accurate. Since this deviation 
is small, however, the total error remains acceptable. For smaller Ca, [4] is still better satisfied: 
figure 9. 

There is thus good reason to expect that the solutions also provide a good approximation, the 
main uncertainty lying in the value of q>0, as discussed below. 

6. DYNAMIC CONTACT ANGLE DEPENDENCE ON SYSTEM SCALE AND 
TRUE CONTACT ANGLE 

In figure 10 the predicted dynamic contact angle dependence on the system scale a[/2 value, since 
¢c = ln(a/2)] is presented for ~00 = 135 ° and various values of Ca. In contrast with the advancing 
case the dynamic contact angle is seen to depend strongly on ~c especially as the Cacrit is approached. 

In figure 11 the dynamic contact angle dependence on ~00 is shown for ¢¢ = 15 and various Ca. 
Again, in contrast with the advancing case, the dynamic contact angle is very sensitive to changes 
in q>0, this sensitivity once more increasing as the Caerit is approached. 

In view of the strong ~00 dependence of ~a, measurements of q>d should provide an indication 
of the variation of the true contact angle with the line speed. In the next section a comparison of 
the predicted Cacrit with recently obtained experimental values is undertaken. 

7. C O M P A R I S O N  W I T H  E X P E R I M E N T A L  R E S U L T S  

Receding contact lines in a tube geometry have been experimentally investigated recently by 
Qu~r~ (1991). Drops of various alkanes were displaced inside a teflon capillary tube by applying 
a pressure difference over the drop and the Ca investigated at which the drop first leaves a film 
behind. Static contact angles for this system, deduced from microbalance measurements, exhibited 
considerable hysteresis, receding angles, ~or, being around 20 ° less than advancing. Figure 12 
compares the Caerit found by Qu6r6 for different values of q>~ with predictions of the present model, 
assuming that 

~0 = wr, [10] 
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Figure 12. Comparison of the Ca¢. t obtained experimentally 
by Qu6r6 (1991) (El) with those predicted by the model ( - - )  
as a function of the (receding) static angle, assuming that  

~P0 = tPr (~Or in degrees). 

for two values of 2 :10  -9 and 10-1°m (the latter representing the lowest plausible value). While 
the order of magnitude and Cpr dependence of Cacrit a r e  well-predicted by the model, the values of 
Cacnt appeart to be overpredicted by a factor of 2 or more. 

Various possible explanations of this discrepancy present themselves. It may be related to the 
non-ideal nature of the solid surface concerned (as indicated by the substantial hysteresis observed 
in the static angles). It may reflect inaccuracies in the local-wedge approximation, though the 
success of this approximation in the advancing case suggests this is unlikely. Alternatively it may 
be indicative of a deviation of the true contact angle from the static (receding) value at the Ca 
concerned, good agreement with the measurements being obtained for a 2 value of 10 -9 m if it is 
supposed that 

~00 = 0.68~0 r. [11] 

The factor 0.68 would presumably increase as Ca decreases, becoming 1 in the static limit. 

8. FINAL DISCUSSION 

The present model, like others, predicts a maximum capillary number, Cacrit, above which no 
stationary receding meniscus exists. Unlike other models, however, excepting that of de Gennes 
(1986), the limiting value of the dynamic contact angle at Cacrit is not predicted to be zero, except 
in the limit of small true contact angle, ~o 0. The portion of the meniscus which is significantly 
deformed from the spherical is, furthermore, predicted to be considerable unless ¢P0 is small. The 
Cacrit is predicted to exhibit a strong dependence on the system scale (/2-value) and the true contact 
angle. It is this strong dependence which enables conclusions to be drawn from experiments 
regarding the values of ~00 or 2. The comparison of the predictions of the model with the 
experiments of Qu6r6 (1991) suggests that at the Cacn, the true contact angle is significantly smaller 
than the static angle by a factor which is seemingly independent of the static contact angle for the 
alkane-teflon system concerned. Measurements of the Ca dependence of ~Od, would permit this 
factor to be evaluated for smaller Ca values. 

tThe  error bounds indicated by Qu6r6 (1991) on the lower ¢p, values are greater than the discrepancy concerned; for the 
larger ¢p, values, however, this is not  the case. 
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